Download here: http://gg.gg/v81jo
*ULI Hard Disk Controller Driver
*Uli Hard Disk Controller Drivers
Yes, I am well acquainted with the Disk Management tool. Unfortunately there are no paths starting with Device Harddisk# visible here. The harddisk5 dr5 appears like a logical drive and partition on one of the non-system disks. The system disk will be disk 0. It appears as Disk 1 on my machine.
Table of Contents Drivers ttec cameras free.5.1. Hard Disk Controllers5.2. Disk Image Files (VDI, VMDK, VHD, HDD)5.3. The Virtual Media Manager5.4. Special Image Write Modes5.5. Differencing Images5.6. Cloning Disk Images5.7. Host Input/Output Caching5.8. Limiting Bandwidth for Disk Images5.9. CD/DVD Support5.10. iSCSI Servers5.11. vboximg-mount: A Utility for FUSE Mounting a Virtual Disk Image5.11.1. Viewing Detailed Information About a Virtual Disk Image5.11.2. Mounting a Virtual Disk Image
As the virtual machine will most probably expect to see a hard disk built into its virtual computer, Oracle VM VirtualBox must be able to present real storage to the guest as a virtual hard disk. There are presently three methods by which to achieve this:
*
Oracle VM VirtualBox can use large image files on a real hard disk and present them to a guest as a virtual hard disk. This is the most common method, described in Section 5.2, “Disk Image Files (VDI, VMDK, VHD, HDD)”.
*
iSCSI storage servers can be attached to Oracle VM VirtualBox. This is described in Section 5.10, “iSCSI Servers”.
*
You can allow a virtual machine to access one of your host disks directly. This is an advanced feature, described in Section 9.7.1, “Using a Raw Host Hard Disk From a Guest”.
Each such virtual storage device, such as an image file, iSCSI target, or physical hard disk, needs to be connected to the virtual hard disk controller that Oracle VM VirtualBox presents to a virtual machine. This is explained in the next section.
*Check the Status of Your Hard Drive. Press Windows + R and the window will pop up. Input devmgmt.msc and press Enter. Choose Disk Drives and right-click the hard drive. Click Properties and check the status of your hard drive. If it is Ok, showing ’This device is working properly’.
*Hard Disk Controller: A hard disk controller (HDC) is an electrical component within a computer hard disk that enables the processor or CPU to access, read, write, delete and modify data to and from the hard disk. Essentially, an HDC allows the computer or its processor to control the hard disk.
*Uli sata /raid-controller m1573 driver driver comments, 5 out of 5 based on 2 ratings.3 user comments. Gigabyte uli m1573 sata raid driver - newsletter enter your e-mail address to receive news, tips, updates and special offers about hard disk sentinel software.
In a computing device, hard disks and CD/DVD drives are connected to a device called a hard disk controller, which drives hard disk operation and data transfers. Oracle VM VirtualBox can emulate the most common types of hard disk controllers typically found in computing devices: IDE, SATA (AHCI), SCSI, SAS, USB-based, NVMe and virtio-scsi mass storage devices.
*
IDE (ATA) controllers are a backwards-compatible yet very advanced extension of the disk controller in the IBM PC/AT (1984). Initially, this interface worked only with hard disks, but was later extended to also support CD-ROM drives and other types of removable media. In physical PCs, this standard uses flat ribbon parallel cables with 40 or 80 wires. Each such cable can connect two devices, called device 0 and device 1, to a controller. Typical PCs had two connectors for such cables. As a result, support for up to four IDE devices was most common: primary device 0, primary device 1, secondary device 0, and secondary device 1.
In Oracle VM VirtualBox, each virtual machine may have one IDE controller enabled, which gives you up to four virtual storage devices that you can attach to the machine. By default, one of these virtual storage devices, device 0 on the secondary channel, is preconfigured to be the virtual machine’s virtual CD/DVD drive. However, you can change the default setting.
Even if your guest OS has no support for SCSI or SATA devices, it should always be able to see an IDE controller.
You can also select which exact type of IDE controller hardware Oracle VM VirtualBox should present to the virtual machine: PIIX3, PIIX4, or ICH6. This makes no difference in terms of performance, but if you import a virtual machine from another virtualization product, the OS in that machine may expect a particular controller type and crash if it is not found.
After you have created a new virtual machine with the New Virtual Machine wizard of the VirtualBox Manager, you will typically see one IDE controller in the machine’s Storage settings. The virtual CD/DVD drive will be attached to one of the four ports of this controller.
*
Serial ATA (SATA) is a more recent standard than IDE. Compared to IDE, it supports both much higher speeds and more devices per controller. Also, with physical hardware, devices can be added and removed while the system is running. The standard interface for SATA controllers is called Advanced Host Controller Interface (AHCI).
Like a real SATA controller, Oracle VM VirtualBox’s virtual SATA controller operates faster and also consumes fewer CPU resources than the virtual IDE controller. Also, this enables you to connect up to 30 virtual hard disks to one machine instead of just three, when compared to the Oracle VM VirtualBox IDE controller with a DVD drive attached.
For this reason, depending on the selected guest OS, Oracle VM VirtualBox uses SATA as the default for newly created virtual machines. One virtual SATA controller is created by default, and the default disk that is created with a new VM is attached to this controller. Warning
The entire SATA controller and the virtual disks attached to it, including those in IDE compatibility mode, will not be seen by OSes that do not have device support for AHCI. In particular, there is no support for AHCI in Windows versions before Windows Vista. Legacy Windows versions such as Windows XP, even with SP3 installed, will not see such disks unless you install additional drivers. It is possible to switch from IDE to SATA after installation by installing the SATA drivers and changing the controller type in the VM Settings dialog.
Oracle VM VirtualBox recommends the Intel Matrix Storage drivers, which can be downloaded from http://downloadcenter.intel.com/Product_Filter.aspx?ProductID=2101.
To add a SATA controller to a machine for which it has not been enabled by default, either because it was created by an earlier version of Oracle VM VirtualBox, or because SATA is not supported by default by the selected guest OS, do the following. Go to the Storage page of the machine’s Settings dialog, click Add Controller under the Storage Tree box and then select Add SATA Controller. The new controller appears as a separate PCI device in the virtual machine, and you can add virtual disks to it.
To change the IDE compatibility mode settings for the SATA controller, see Section 8.18, “VBoxManage storagectl”.
*
SCSI is another established industry standard, standing for Small Computer System Interface. SCSI is as a generic interface for data transfer between all kinds of devices, including storage devices. SCSI is still used for connecting some hard disks and tape devices, but it has mostly been displaced in commodity hardware. It is still in common use in high-performance workstations and servers.
Primarily for compatibility with other virtualization software, Oracle VM VirtualBox optionally supports LSI Logic and BusLogic SCSI controllers, to each of which up to fifteen virtual hard disks can be attached.
To enable a SCSI controller, on the Storage page of a virtual machine’s Settings dialog, click Add Controller under the Storage Tree box and then select Add SCSI Controller. The new controller appears as a separate PCI device in the virtual machine. Warning
As with the other controller types, a SCSI controller will only be seen by OSes with device support for it. Windows 2003 and later ships with drivers for the LSI Logic controller, while Windows NT 4.0 and Windows 2000 ships with drivers for the BusLogic controller. Windows XP ships with drivers for neither.
*
Serial Attached SCSI (SAS) is another bus standard which uses the SCSI command set. As opposed to SCSI physical devices, serial cables are used instead of parallel cables. This simplifies physical device connections. In some ways, therefore, SAS is to SCSI what SATA is to IDE: it enables more reliable and faster connections.
To support high-end guests which require SAS controllers, Oracle VM VirtualBox emulates a LSI Logic SAS controller, which can be enabled much the same way as a SCSI controller. At this time, up to 255 devices can be connected to the SAS controller. Warning
As with SATA, the SAS controller will only be seen by OSes with device support for it. In particular, there is no support for SAS in Windows before Windows Vista. So Windows XP, even SP3, will not see such disks unless you install additional drivers.
*
The USB mass storage device class is a standard to connect external storage devices like hard disks or flash drives to a host through USB. All major OSes support these devices and ship generic drivers making third-party drivers superfluous. In particular, legacy OSes without support for SATA controllers may benefit from USB mass storage devices.
The virtual USB storage controller offered by Oracle VM VirtualBox works differently to the other storage controller types. While most storage controllers appear as a single PCI device to the guest with multiple disks attached to it, the USB-based storage controller does not appear as virtual storage controller. Each disk attached to the controller appears as a dedicated USB device to the guest. Warning
Booting from drives attached using USB is only supported when EFI is used as the BIOS lacks USB support.
*
Non volatile memory express (NVMe) is a standard for connecting non volatile memory (NVM) directly over PCI Express to lift the bandwidth limitation of the previously used SATA protocol for solid-state devices. Unlike other standards the command set is very simple in order to achieve maximum throughput and is not compatible with ATA or SCSI. OSes need to support NVMe devices to make use of them. For example, Windows 8.1 added native NVMe support. For Windows 7, native support was added with an update.
The NVMe controller is part of the extension pack. Warning
Booting from drives attached using NVMe is only supported when EFI is used as the BIOS lacks the appropriate driver.
*
Virtual I/O Device SCSI is a standard to connect virtual storage devices like hard disks or optical drives to a VM. Recent Linux and Windows versions support these devices, but Windows needs additional drivers. Currently virtio-scsi controller support is experimental. Warning
The virtio-scsi controller will only be seen by OSes with device support for it. In particular, there is no built-in support in Windows. So Windows will not see such disks unless you install additional drivers.
In summary, Oracle VM VirtualBox gives you the following categories of virtual storage slots:
*
Four slots attached to the traditional IDE controller, which are always present. One of these is typically a virtual CD/DVD drive.
*
30 slots attached to the SATA controller, if enabled and supported by the guest OS.
*
15 slots attached to the SCSI controller, if enabled and supported by the guest OS.
*
Up to 255 slots attached to the SAS controller, if enabled and supported by the guest OS.
*
Eight slots attached to the virtual USB controller, if enabled and supported by the guest OS.
*
Up to 255 slots attached to the NVMe controller, if enabled and supported by the guest OS.
*
Up to 256 slots attached to the virtio-scsi controller, if enabled and supported by the guest OS.
Given this large choice of storage controllers, you may not know which one to choose. In general, you should avoid IDE unless it is the only controller supported by your guest. Whether you use SATA, SCSI, or SAS does not make any real difference. The variety of controllers is only supplied by Oracle VM VirtualBox for compatibility with existing hardware and other hypervisors.
Disk image files reside on the host system and are seen by the guest systems as hard disks of a certain geometry. When a guest OS reads from or writes to a hard disk, Oracle VM VirtualBox redirects the request to the image file.
Like a physical disk, a virtual disk has a size, or capacity, which must be specified when the image file is created. As opposed to a physical disk however, Oracle VM VirtualBox enables you to expand an image file after creation, even if it has data already. See Section 8.22, “VBoxManage modifymedium”.
Oracle VM VirtualBox supports the following types of disk image files:
*
VDI. Normally, Oracle VM VirtualBox uses its own container format for guest hard disks. This is called a Virtual Disk Image (VDI) file. This format is used when you create a new virtual machine with a new disk.
*
VMDK. Oracle VM VirtualBox also fully supports the popular and open VMDK container format that is used by many other virtualization products, such as VMware.
*
VHD. Oracle VM VirtualBox also fully supports the VHD format used by Microsoft.
*
HDD. Image files of Parallels version 2 (HDD format) are also supported.
Due to lack of documentation of the format, newer versions such as 3 and 4 are not supported. You can however convert such image files to version 2 format using tools provided by Parallels.
Irrespective of the disk capacity and format, as mentioned in Section 1.7, “Creating Your First Virtual Machine”, there are two options for creating a disk image: fixed-size or dynamically allocated.
*
Fixed-size. If you create a fixed-size image, an image file will be created on your host system which has roughly the same size as the virtual disk’s capacity. So, for a 10 GB disk, you will have a 10 GB file. Note that the creation of a fixed-size image can take a long time depending on the size of the image and the write performance of your hard disk.
*
Dynamically allocated. For more flexible storage management, use a dynamically allocated image. This will initially be very small and not occupy any space for unused virtual disk sectors, but will grow every time a disk sector is written to for the first time, until the drive reaches the maximum capacity chosen when the drive was created. While this format takes less space initially, the fact that Oracle VM VirtualBox needs to expand the image file consumes additional computing resources, so until the disk file size has stabilized, write operations may be slower than with fixed size disks. However, after a time the rate of growth will slow and the average penalty for write operations will be negligible.
Oracle VM VirtualBox keeps track of all the hard disk, CD/DVD-ROM, and floppy disk images which are in use by virtual machines. These are often referred to as known media and come from two sources:
*
All media currently attached to virtual machines.
*
Registered media, for compatibility with legacy Oracle VM VirtualBox versions.
The known media can be viewed and changed using the Virtual Media Manager, which you can access from the File menu in the VirtualBox Manager window.
Figure 5.1. The Virtual Media Manager
The known media are conveniently grouped in separate tabs for the supported formats. These formats are:
*
Hard disk images, either in Oracle VM VirtualBox’s own Virtual Disk Image (VDI) format, or in the third-party formats listed in Section 5.2, “Disk Image Files (VDI, VMDK, VHD, HDD)”.
*
CD/DVD images in standard ISO format.
*
Floppy images in standard RAW format.
For each image, the Virtual Media Manager shows you the full path of the image file and other information, such as the virtual machine the image is currently attached to.
The Virtual Media Manager enables you to do the following:
*
Add an image to the known media.
*
Create a new disk image.
*
For virtual hard disks, the Create Virtual Hard Disk wizard is shown.
*
For optical disks, the VISO Creator screen is shown. This enables you to create a virtual ISO from selected files on the host.
*
For floppy disks, the Floppy Disk Creator screen is shown.
*
Copy an image to create another one.
For virtual hard disks, you can specify one of the following target types: VDI, VHD, or VMDK.
*
Move an image to another location.
A file dialog prompts you for the new image file location.
When you use the Virtual Media Manager to move a disk image, Oracle VM VirtualBox updates all related configuration files automatically. Note
Always use the Virtual Media Manager or the VBoxManage modifymedium command to move a disk image.
If you use a file management feature of the host OS to move a disk image to a new location, run the VBoxManage modifymedium--setlocation command to configure the new path of the disk image on the host file system. This command updates the Oracle VM VirtualBox configuration automatically.
*
Remove an image from the known media. You can optionally delete the image file when removing the image.
*
Release an image to detach it from a VM. This action only applies if the image is currently attached to a VM as a virtual hard disk.
*
Search for an image by name or UUID.
*
View and edit the Properties of a disk image.
Available properties include the following:
*
Type: Specifies the snapshot behavior of the disk. See Section 5.4, “Special Image Write Modes”.
*
Location: Specifies the location of the disk image file on the host system. You can use a file dialog to browse for the disk image location.
*
Description: Specifies a short description of the disk image.
*
Size: Specifies the size of the disk image. You can use the slider to increase or decrease the disk image size.
*
Information: Specifies detailed information about the disk image.
*
Refresh the property values of the selected disk image.
To perform these actions, highlight the medium in the Virtual Media Manager and then do one of the following:
*
Click an icon in the Virtual Media Manager task bar.
*
Right-click the medium and select an option.
Use the Storage page in a VM’s Settings dialog to create a new disk image. By default, disk images are stored in the VM’s folder.
You can copy hard disk image files to other host systems and then import them in to VMs from the host system. However, some Windows guest OSes may require that you configure the new VM in a similar way to the old one. Note
Do not simply make copies of virtual disk images. If you import such a second copy into a VM, Oracle VM VirtualBox issues an error because Oracle VM VirtualBo

https://diarynote-jp.indered.space

コメント

最新の日記 一覧

<<  2025年7月  >>
293012345
6789101112
13141516171819
20212223242526
272829303112

お気に入り日記の更新

テーマ別日記一覧

まだテーマがありません

この日記について

日記内を検索